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Corrections to scaling in random resistor networks and diluted continuous spin models
near the percolation threshold
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We investigate corrections to scaling induced by irrelevant operators in randomly diluted systems near the
percolation threshold. The specific systems that we consider are the random resistor network and a class of
continuous spin systems, such as thex-y model. We focus on a family of least irrelevant operators and
determine the corrections to scaling that originate from this family. Our field theoretic analysis carefully takes
into account that irrelevant operators mix under renormalization. It turns out that long standing results on
corrections to scaling are respectively incorrect~random resistor networks! or incomplete~continuous spin
systems!.
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I. INTRODUCTION

In the mid 1980s Harris, Lubensky and co-workers~HL!
@1–3# developed a seminal field theoretic model for the u
fied description of percolating random resistor netwo
~RRNs! and a class of diluted continuous spin systems~such
as the x-y model!. Their approach, based on ideas
Stephen@4#, turned out to be very fruitful. In the course o
the years, it provided a foundation for the exploration
various critical properties, not only of thex-y model and the
RRN @2,3,6,7#, but also of random resistor diode networ
@8,9#, the swiss cheese model@10,11#, and random networks
of Josephson junctions@12,13#. Moreover, it fostered the
computation of several fractal dimensions of isotropic@14–
16# and directed@8,17# percolation clusters and aided stud
ing multifractality in isotropic@18–20# and directed@21,22#
percolation. Also, the HL model helped to improve the u
derstanding of the vulcanization transition@23#.

An important role in the HL model is played by the e
ponentf. It describes the power law behavior of the avera
resistanceMR

(1) between two connected pointsx andx8 at the
percolation threshold,

MR
(1);ux2x8uf/n. ~1.1!

Here, n is the critical exponent of the correlation lengthj
;up2pcu2n, wherep is the probability that controls the di
lution of the network andp5pc marks the critical point.

Originally @2# f was thought to be the first member,f
5f1, of an entire family$fm ,m51,2, . . .% of exponents
with the mth member describing themth cumulant of the
resistance,

MR
(m);ux2x8ufm /n. ~1.2!

The fm were calculated to one-loop order@2#. Shortly later
Rammal, Lemieux, and Tremblay@5# showed that the highe
crossover exponentsfm.1 are irrelevant and that higher cu
mulants scale as
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MR
(m);ux2x8umf/n, ~1.3!

i.e., they display the so-called gap scaling. Furthermo
Rammal, Lemieux, and Tremblay argued that thefm.1 are
important for corrections to scaling and specifically th
these are governed by exponentsvm5(mf2fm)/n. For ex-
ample, the average resistance was thought to behave as

MR
(1);ux2x8uf/nF11(

m
Amux2x8u2vmG , ~1.4!

and the conductivityS as

S;~p2pc!
tF11(

m
Bm~p2pc!

nvmG . ~1.5!

Here,t is the conductivity exponentt5(d22)n1f, andAm
andBm are nonuniversal amplitudes.

In this paper we take up the issue of corrections to sca
in RRN anew. Our careful analysis reveals that previo
work on this subject is erroneous and that thefm.1 are
meaningless, at least as far as corrections to scaling in R
are concerned. It turns out that the previous studies o
looked a crucial feature of irrelevant field theoretic operato
viz., that they tend to mix under renormalization. Taking th
subtlety into account, we calculate corrections to scaling
the average resistance and the conductivity. Moreover,
reexamine corrections to scaling in continuous spin mod
Due to a difference in the symmetry properties that plays
role for the leading scaling behavior, the corrections to sc
ing in continuous spin models and RRN are somewhat
ferent. We determine the correction to scaling exponents
the first cumulant of the spin orientations.

The outline of our paper is as follows. In Sec. II w
present a few basics about the RRN and thex-y model. Then
we state the field theoretic Hamiltonian defining the H
model and sketch its physical contents. Next we collect
irrelevant field theoretic operators that lead to the correcti
to scaling we are interested in. These operators can be
©2004 The American Physical Society18-1
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sified into two groups, viz., specific operators and gene
percolation operators. Section III briefly reviews known fie
theoretic results for the HL model including the leading sc
ing behavior and the leading correction to it. In Sec. IV w
analyze the equation of motion implicit in the HL Hami
tonian. This analysis provides us with several results that
valid to arbitrary order in perturbation theory. Section
comprises our renormalization group analysis of the spec
operators. The general percolation operators are scrutin
in Sec. VI. In Sec. VII we derive our final results for th
critical behavior of the average resistance, etc. The main
of our paper concludes with several remarks given in S
VIII. There are three appendixes. In Appendix A we deri
two useful identities that help us exploiting the equation
motion. Appendix B features some general considerations
composite fields in the HL model. Appendix C contains d
tails on the computation of Feynman diagrams.

II. THE HARRIS-LUBENSKY MODEL

A. Random resistor networks and the dilutedx-y model

Both the RRN and the dilutedx-y model can be describe
by a Hamiltonian of the type

H52(
^ i , j &

Ui , j~q i2q j !, ~2.1!

whereq i is a continuous dynamical variable pertaining to
site i of a d-dimensional hypercubic lattice and the sum ru
over all nearest neighbor pairs on this lattice. For the RR
q i corresponds to the voltageVi at site i and is defined on
the interval@2`,`#. Here

Ui , j~V!52 1
2 s i , jV

2 ~2.2!

is the electrical power dissipated on the bond betweeni and
j, with s i , j denoting the conductance of this bond.s i , j is a
random variable that takes on the valuess and 0 with prob-
ability p and 12p, respectively. In the case of thex-y
model,q i is the anglew i that specifies the orientation of th
spin at sitei and is defined on the interval@2p,p#. Here,

Ui , j~w!5Ki , jcosw ~2.3!

with Ki , j being the exchange integral. In the dilutedx-y
model the exchange integral is assumed to take on the va
K and 0, respectively, with probabilityp and 12p.

B. The Harris-Lubensky Hamiltonian

Based on the Hamiltonian~2.1! HL derived a field theo-
retic model that can be written as

H5E ddxH (
uW

S t

2
s21

1

2
~“s!21

w

2
~“us!21

g

6
s3D

1(
i

f iAiJ . ~2.4!

For details on the derivation we refer the reader to Ref.@3#.
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The order parameter fields(x,uW ) lives on a continuous
d-dimensional space with the coordinatesx. It is subject to
the constraint

(
uW

s~x,uW !50. ~2.5!

The variableuW is a replicated analog of the original dynam
cal variable q and takes on discrete values on
D-dimensional torus~the replica space!. Formally,uW is given
by uW 5kWDu, wherekW is a D-dimensional vector with intege
componentsk(a) and2M,k(a)<M . To recover the physi-
cal situation, one has to take the replica limitD→0, M
→` with MD→1 andDu5u0 /AM . In this limit, u0 plays
the role of a redundant scaling parameter, i.e., the theor
independent of its value. The parametert is proportional to
pc2p, i.e., it specifies the distance from the critical point.w
is proportional tos21 or K21, respectively. TheAi , finally,
are irrelevant field theoretic operators~rotationally invariant
monomials constructed from the fundamental fields and its
derivatives in real and replica space!. Specifics of the irrel-
evant operators will be given below.

For w5 f i50, the HL Hamiltonian describes theN-state
Potts model withN5(uW15(2M )D. In this case we have
SN , the group of all permutations ofN objects, as the inter-
nal symmetry group. IfwÞ0, this symmetry is reduced to
O(D), the group of orthogonal rotations in the replica spa
A particular scaling symmetry of the Hamiltonian will b
important as we go along; namely,H is invariant under the
rescalingw→b w because the scaling factorb can be ab-
sorbed into the redundant parameteru0.

In the following we use that(uW•••'(Du)D(uW•••

'*dDu••• and abbreviate the latter integral by*uW•••. The
approximations involved here become exact in the rep
limit.

C. Physical contents

To fully appreciate the physical contents of the HL mod
it is helpful to consider the replica space Fourier transfor

clW ~x!5E
uW
exp~2 ilW •uW !s~x,uW ! ~2.6!

of the order parameter. For completeness we mention h
that the constraint~2.5! translates upon replica space Four
transform into

c0W~x!50. ~2.7!

This constraint is intuitively clear becausec0W(x) is a con-
stant and hence does not qualify as an order paramete
will play an important role in our renormalization grou
~RG! analysis.

The value of the quantityclW (x) is that its correlation
functions

G~x,x8;lW !5^clW ~x!c2lW ~x8!& ~2.8!
8-2
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provide convenient access to physical observables. In
case of the RRN one has

G~x,x8;lW !5K expF2
lW 2

2
R~x,x8!G L

C

, ~2.9!

whereR(x,x8)5^@Vx2Vx8#
2& is the macroscopic resistanc

between the pointsx and x8 and ^•••&C denotes averaging
over all configurations of the diluted lattice. Henc
G(x,x8;lW ) is a generating function for the moments of t
resistance distribution

MR
( l )~x,x8!5^R~x,x8! l&C8 , ~2.10!

where the prime indicates averaging subject to the constr
that x andx8 are connected.

For the dilutedx-y model the Hamiltonian~2.1! is not
Gaussian and one is led to

G~x,x8;lW !5K expF(
l 51

`
~21! l

~2l !!
Kl~lW !^@wx2wx8#

2l& (c)G L
C

,

~2.11!

where^•••& (c) stands for the cumulants with respect to t
averagê •••& and Kl(lW )5(a51

D @l (a)#2l . Thus,G(x,x8;lW )
is a generating function for the cumulants

Cw
( l )~x,x8!5^^@wx2wx8#

2l& (c)&C8 , ~2.12!

which measure the fluctuation of the angular variables.Cw
(1) ,

in particular, is related to the spin-wave stiffness.

D. The irrelevant operators Ai

The main goal of this paper is to analyze corrections
scaling. The leading correction to scaling for the avera
resistance, etc., is well known since it is described by
so-called Wegner exponent, see Sec. III B below. The nex
leading corrections stem from irrelevant operators wh
scale asA i;m8 at the upper critical dimensiondc56,
wherem is some inverse length scale. These operators ca
classified into two groups. The first group consists of ope
tors having at least two derivatives with respect to the rep
space. The operators belonging to this group will be refer
to as specific operators. In the case of the RRN, the spe
operators are given by theO(D) invariant composite fields

A05
w

2
¹2S E

uW
s¹u

2sD , ~2.13a!

A15
w2

2 E
uW
~¹u

2s!2, ~2.13b!

A25
w

2EuW
s¹2¹u

2s, ~2.13c!

A352
w

6EuW
s2¹u

2s. ~2.13d!
02611
he

int

o
e
e
to
h

be
-
a
d
fic

Each replica space derivative is accompanied by a factorAw
to ensure invariance under the rescalingw→b w.

When considering thex-y model, we have to admit all o
the hypercubic invariants of¹u rather than of¹u

2 . Thus, we
are confronted with a further operator with the naive dime
sion 8, namely,

Ac5
w2

2 E
uW
(
a51

D

~¹u(a)
2 s!2. ~2.14!

Note that this operator breaks theO(D) symmetry in rep-
lica space.

As we go along we will see that the family$A0 , . . . ,A3%
is associated with corrections to scaling of the average re
tance and conductivity in RRNs. Hence, we refer to this fa
ily as resistor specific. The larger family$Ac ,A0 , . . . ,A3%
is associated with corrections of the spin orientation cum
lants in diluted continuous spin systems. Thus, we say
family is spin specific.

The next group of operators leads to corrections for b
pure percolation and the respective specific behavior. We
fer to these operators as general percolation operators.
pure percolation behavior results from the HL model in t
limit w50. Thus, the second group involves only operat
without derivatives with respect to the replica space. Th
are given by theSN invariant composite fields

A45
1

2EuW
~¹2s!2, ~2.15a!

A552
1

6EuW
s2¹2s, ~2.15b!

A65
1

4! S EuW
s2D 2

, ~2.15c!

A75
1

4!EuW
s4. ~2.15d!

At first sight, three additional general percolation operat
with naive dimension 8 seem to matter, namely

A85
1

2EuW
s~¹2!2s, ~2.16a!

A95
1

2
¹2E

uW
s¹2s, ~2.16b!

A105
1

2
~¹2!2E

uW
s2, ~2.16c!

A115
1

6
¹2E

uW
s3. ~2.16d!

However, these operators can be neglected in calculating
rections to scaling. Upon Fourier transformation ofA4 and
A8 one sees that these two operators coincide for vanish
external momentum. Thus, it is sufficient for our purposes
8-3
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keepA4 . A9 to A11 are merely total derivatives of lower
dimensional operators. Their Fourier transformed coun
parts are proportional to some~positive and even! power of a
external momentum and hence these operators cannot
tribute to a translational invariant Hamiltonian. This situati
is similar for A0. We choose, though, to keepA0 in our
analysis for two reasons:~i! To exemplify explicitly that this
kind of operator does in the end not contribute to the corr
tions to scaling.~ii ! Based on the scaling symmetries ofH
we can draw exact conclusions onA0 which then can be
compared to the results of our explicit one-loop calculati
i.e., retainingA0 allows for a later consistency check.

III. A BRIEF REVIEW OF KNOWN RENORMALIZATION
GROUP RESULTS

Many of the critical properties of the HL model are we
known. Substantial contributions stem,inter alia, from HL.
In earlier work we have investigated the HL by using t
powerful methods of renormalized field theory. Here w
briefly review parts of this work to provide background a
to establish notation.

A. Renormalization and scaling

In Ref. @6# we have studied the HL model with all thef i
equal to zero. In particular we have determined the renorm
izations

s→ s̊5Z1/2s, ~3.1a!

t→ t̊5Z21Ztt, ~3.1b!

w→ẘ5Z21Zww, ~3.1c!

g→g̊5Z23/2Zgg, ~3.1d!

u5G«m2«g2 ~3.1e!

in dimensional regularization and minimal subtraction
«-poles@24#. Here, the ° denotes bare, unrenormalized qu
tities. The coupling constantu is introduced because it i
convenient and dimensionless.«562d measures the devia
tion from the upper critical dimension.G«5G(1
1«/2)/(4p)d/2 is a dimension-dependent numerical fact
We have determined the renormalization constantsZ...(u) to
second order inu in a two-loop calculation. From the schem
~3.1! we derived a Gell-Mann-Low RG equation for the ve
tex functionsG (n) with n amputated external legs,

Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
2

n

2
gGG (n)~$x,lW %;t,u,w,m!

50, ~3.2!

with the Wilson functions b(u)5m]u/]mu0 , k(u)
5m] ln t/]mu0, z(u)5m] ln w/]mu0 , and g(u)
02611
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5m(]/]m)ln Zu0 @25#. Solving Eq.~3.2! at the infrared stable
fixed point u* leads to the scaling behavior of the verte
functions@26#,

G (n)~$x,lW %;t,u,w,m!

5,2(d221h)n/2G (n)~$,x,lW %;,21/nt,u* ,,2f/nw,m!.

~3.3!

The exponentsh5g* , n5~22k* !, and f5n~22z* ! @g*
5g(u* ), k* 5k(u* ), and so on# are the usual critical ex-
ponents for percolation and the RRN. In the present pape
work to one-loop order. To this order,u* 52«/71O(«2) and
the critical exponents are given byh52«/211O(«2), n
51/215«/841O(«2), andf511«/421O(«2).

From Eq.~3.3! one can extract the leading scaling beha
ior of various observables. Exploiting Eq.~2.9!, for example,
it is straightforward to derive Eq.~1.3! for MR

(m) .

B. The leading correction to scaling

The leading correction to scaling is, as usual, governed
the so-called Wegner exponent. This leading correct
emerges when the renormalized couplingu is not exactly
equalu* since the renormalization flow has not arrived at
fixed point yet. Such a case occurs typically when there
finite momentum cutoff reminiscent of a nonvanishing latti
spacing.

Taking the leading correction into account, the scali
behavior, e.g., of the average resistance~1.1! becomes

MR
(1);ux2x8uf/n@11Aux2x8u2v#, ~3.4!

whereA is a nonuniversal amplitude andv5b8(u* ) is the
Wegner exponent.v can be calculated without much effort t
third order in « upon using the three-loop result forb(u)
obtained by de Alcantara Bonfimet al. @27#. To the order we
are working here, the Wegner exponent is given by

v5«1O~«2!. ~3.5!

Expressions similar to Eq.~3.4! hold for the conductivity and
so on.

IV. CONSEQUENCES OF THE EQUATION OF MOTION

Several of the correction to scaling exponents originat
from the specific and the general percolation operators
be derived without resorting to an explicit perturbation c
culation. We will do so by analyzing the classical equation
motion. The so obtained results have the virtue of being
orous in the sense that they hold to arbitrary in perturbat
theory. In the remainder we will frequently encounter t
so-called scaling dimensionxA of an eigenoperatorA. For-
mally, xA is defined via the rescalingA(x)5,xAA(,x) when
A is inserted into vertex or correlation functions at the cr
cal point.

Before we turn to the consequences of the equation
motion we take a little detour and extract a consequence
the invariance ofH under the rescalingw→bw. It follows
8-4
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from this rescaling invariance that, in the casewÞ0, the
operatorw*uW(“us)2 is marginal and its scaling dimension
equal tod. Note thatA0 results from the application of th
Laplacian¹2 to the this marginal operator. Consequently t
scaling dimension ofA0 is given by

xA0
5d12. ~4.1!

Now we turn to the equation of motion. It is well know
that for every independent equation, which follows from t
equation of motion, there is an eigenoperator of the RG w
a scaling dimension that can be expressed in terms of
scaling dimensions of lower-dimensional operators. F
some background on four- and six-dimensional operator
the HL model we refer to Appendix B.

The classical equation of motion derived from the Ham
tonian ~2.4! and the constraint~2.5! reads

H 8ª
dH
ds U

f 50

52¹2s2w¹u
2s1ts1

g

2 S s22
1

NEuW
s2D 50.

~4.2!

In the following we work in the limit D→0, i.e., N
5(2M )D→1. We consider the lower-dimensional operato

B15w¹u
2s, B25¹2s, B35H 8. ~4.3!

The scaling dimensions of the first two follow from the
renormalizations as

xB1
5

d221h

2
1

f

n
, xB2

5
d121h

2
. ~4.4!

The scaling dimension ofB3,

xB3
5d221hB3

, ~4.5!

is not the same as the scaling dimension of the operatoB0
5*us2. B0 belongs to the trivial representation of the pe
mutation symmetry groupSN , whereas the operatorsBi with
i 51,2,3 transform likes(x,uW ), i.e., they belong to the fun
damental representation ofSN ~permutations ofN objectsf i

with constraint( i 51
N f i50). Hence,hB3

remains to be de-
termined. In Appendix A we derive a Ward identity, E
~A17!, that implies

hB3
5

«2h

2
~4.6!

to arbitrary order in« expansion. Consequently, we obta
the exact result

xB3
5

d122h

2
. ~4.7!

Now we can extract the actual consequences of the e
tion of motion for our prime targets of interest, viz., th
eight-dimensional operators. In Appendix A we show tha
02611
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^s~x1 ,uW 1!•••s~xn ,uW n!F•H 8~x!&

5(
i 51

n

d~x2xi !^s~x1 ,uW 1!•••s~xi 21 ,uW i 21!F~xi ,uW i !

3s~xi 11 ,uW i 11!•••s~xn ,uW n!&, ~4.8!

whereF is some composite field and where we defined

F•H 8~x!5E
uW
F~x,uW ! H 8~x,uW !. ~4.9!

Upon renormalization, one finds that the identity~4.8! im-
plies the scaling relation

xF•H 85d2xs1xF5
d122h

2
1xF , ~4.10!

where we used thatxs5(d221h)/2. SpecifyingF asBk ,
k51,2,3, we obtain the~as yet unrenormalized! operators

B1•H 8522~A11A2!23gA3 , ~4.11a!

B2•H 8522~A21A4!23gA5 , ~4.11b!

B3•H 852~A112A21A4!16g~A31A5!26g2~A62A7!.
~4.11c!

These combinations are eigenoperators of the RG, at lea
zero-loop order. At higher loop orders, the renormalizat
might modify the combinations appearing on the right-ha
sides of Eqs.~4.11!. Our explicit calculations presented i
Secs. V and VI reveal, however, that this effect is absen
one-loop order. More importantly, general RG arguments~cf.
Ref. @24#! guarantee that this effect has no impact on
scaling dimensions at any loop order. From Eq.~4.10! we
readily deduce that

xB1•H 85d1
f

n
, ~4.12a!

xB2•H 85d12, ~4.12b!

xB3•H 85d122h. ~4.12c!

Two points are worth being emphasized:~i! the scaling rela-
tions ~4.12! are correct to arbitrary order in perturbatio
theory.~ii ! Equations~4.11! and ~4.12! allow us consistency
checks of our explicit diagrammatic calculations. This is p
ticularly valuable because these calculations involve fa
many diagrams and one is confronted with a certain risk
algebraic errors or erroneous symmetry factors.

To prepare the ground for the announced consiste
checks we now evaluate Eqs.~4.12! to one-loop order. Ex-
ploiting the known« expansion results forf andn we find
that the scaling dimensions of the eigenoperatorsB1•H 8 and
B3•H 8 are given to the order we are working here by

xB1•H 85d122
4«

21
1O~«2!, ~4.13a!
8-5
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xB3•H 85d121
«

21
1O~«2!. ~4.13b!

It is a nice little exercise to derive the result~4.13b! explic-
itly in a one-loop calculation. An insertion ofB3 into the
two-point vertex functionG (2) leads to one-loop order to th
singular part

G̊ B̊3

(2)
~$p50%!5211

2u

«
~4.14!

of the bare function. Thus, one finds an extra factor 2 in
singular part in comparison to a corresponding insertion

B0. RenormalizingB̊35ZB3
B3 we find, usingZ511u/6«,

that ZB3
51211u/6«. From this result we eventually get

hB3
5

11«

21
1O~«2!, ~4.15!

which then leads to Eq.~4.13b!.

V. RENORMALIZATION OF SPECIFIC OPERATORS

A. RRN specific operators

To determine the renormalizations of the operat
A0 , . . . ,A3 we study their insertions into the vertex fun
tions G (n). We proceed in the spirit of our previous work o
the RRN. We use

G~p,lW !5^c̃lW ~p! c̃2lW ~2p!& (trunc) ~5.1!

as the Gaussian propagator, wherec̃lW (p) stands for the Fou-
rier transform defined via

clW ~x!5E
p
eip•xc̃lW ~p!. ~5.2!

Here, *p is an abbreviation for (2p)2d/2*ddp. ^•••& (trunc)

denotes averaging with respect to the Gaussian part ofH and
all f i50. Explicitly, our propagator reads

G~p,lW !5
12dlW ,0

p21wlW 21t
5

1

p21wlW 21t
2

dlW ,0

p21t
. ~5.3!

Note that on the right-hand side of Eq.~5.3! the propagator is
decomposed into two parts: the other with unrestricted v
ues oflW ~conducting! and one withlW 50 ~insulating!. The
decomposition of the propagator leads to a decompositio
each of the original~bold! Feynman diagrams into an assem
bly of diagrams made of conducting and insulating propa
tors. These conducting diagrams resemble essential fea
of real resistor networks. One can say that they have a r
world interpretation@6–9,11,13,15–17,19–23#. Upon recast-
ing the conducting and insulating propagators in
Schwinger representation and using the continuum limit
the replica space withD→0, it is easy to calculate all re
02611
e
f

s

l-

of

-
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quired diagrams, see Fig. 1, in dimensional regularization
least to one-loop order. For convenience, we work with
rescaled operators

A i85S m«

G«
D ki /2

Ai ~5.4!

instead of the originalAi . The ki are k05k15k250 and
k351. The benefit of this rescaling is that the primed ope
tors all have the same naive dimension, viz.,A i8;md12. Our
one-loop calculation sketched in Appendix C gives for t
singular parts of the primitively divergent vertex function
with operator insertionsGA

i8
(n)

, n52 and 3, the results

2GA
08

(2)
~p1 ,p2 ,lW !5wlW 2p2S 12

5u

6« D , ~5.5a!

2GA
18

(2)
~p1 ,p2 ,lW !5wlW 2FwlW 2S 12

u

« D2
u

« S p2

90
1

p1
21p2

2

30 D G ,
~5.5b!

2GA
28

(2)
~p1 ,p2 ,lW !5wlW 2Fp1

21p2
2

2 S 12
3u

10« D
1

u

«
S p2

90
1

19wlW 2

10
D G , ~5.5c!

FIG. 1. Diagrams contributing at one-loop order to the ren
malization of the RRN specific operators. These diagrams are
tained by first decomposing the bold one-loop diagrams into th
conducting diagrams and by then inserting the irrelevant opera
in the appropriate places. The bold lines symbolize bold propa
tors, the light lines stand for conducting, and the dashed lines
insulating propagators. The labelsA andB refer to conducting dia-
grams before insertions are made and will be used in the ap
dixes. The dots with wiggly lines stand for an insertion of~0! A 08 ,
~1! A 18 , ~2! A 28 , and~3! A 38 , respectively.
8-6
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2GA
38

(2)
~p1 ,p2 ,lW !52wlW 2

u1/2

«
S 52wlW 2

45
12

p1
21p2

2

15
D ,

~5.5d!

wherep5p11p2, and

2GA
08

(3)
~$p%,$lW %!50, ~5.6a!

2GA
18

(3)
~$p%,$lW %!52

w(
i 51

3

lW i
2

3

u3/2

2«
, ~5.6b!

2GA
28

(3)
~$p%,$lW %!5

w(
i 51

3

lW i
2

3

21u3/2

4«
, ~5.6c!

2GA
38

(3)
~$p%,$lW %!5

w(
i 51

3

lW i
2

3

2

S 12
31u

6« D . ~5.6d!

In writing Eqs. ~5.5! and ~5.6! we have dropped inconse
quential factors (t/m2)2«/2 and (t/m2)2«/2(m«/G«)1/2, re-
spectively, for notational simplicity.

For the purpose of renormalization it is handy to colle
the operators in a vector

A 85~A 08 , . . . ,A 38!T. ~5.7!

Due to the mixing, a proper renormalization requires an
tire renormalization matrixZ. We set

A8→Å8, A85ZÅ8. ~5.8!

This means in turn that the vertex functions with an insert
of A 8 are renormalized by

GA8
(n)→G̊Å8

(n)
, GA8

(n)
5Zn/2ZG̊Å8

(n)
. ~5.9!

The « poles are eliminated by minimal subtraction. To th
end, we introduce the Laurent expansion of theZ matrix,

Z511 (
k51

`
1

«k
M (k). ~5.10!

Our one-loop calculation leads to

M (1)5S 0 0 0 0

u

90
2

u

2

u

15

u3/2

2

2
u

90
2

19u

10
2

17u

15
2

21u3/2

4

0
52u1/2

45

4u1/2

15

17u

4

D .

~5.11!
02611
t
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Bare, unrenormalized quantities are independent of
external length scale parameterm. Thus, we have the iden
tity

m
]

]m
G̊Å8

(n)
~$x,lW %; t̊,ů,ẘ,m!50, ~5.12!

which translates via the renormalizations~3.1! and~5.9! into
the RG equation

S m
]

]m
1kt

]

]t
1zw

]

]w
1b

]

]u
2

n

2
g1g D

3GA8
(n)

~$x,lW %;t,u,w,m!50. ~5.13!

The matrixg is given by

g52
«

2
k1u

]

]u
M (1)1

1

2
~kM (1)2M (1)k!. ~5.14!

Here,k is the diagonal matrix with the diagonal elementsk0 ,
k1 , k2, andk3. To obtain a fixed point solution to the RG
equation~5.13! we recastg* 5g(u* ) in terms of its eigen-
values and eigenvectors,

g* 5 (
m50

3

um&hm^mu, ~5.15!

wherehm are the eigenvalues and^mu and um& are the cor-
responding left and right eigenvectors. A RG equation for
eigenoperator

Om5^muA8 ~5.16!

is then readily derived from the so-obtained fixed point v
sion of Eq.~5.13! by multiplication with ^mu,

S m
]

]m
1k* t

]

]t
1z* w

]

]w
2

n

2
h1hmD

3GO m

(n) ~$x,lW %;t,u* ,w,m!50. ~5.17!

Using the method of characteristics, it is straightforward
solve this RG equation. Augmenting its solution with a d
mensional analysis to account for naive dimensions we
the scaling form

GOm

(n) ~$x,lW %;t,u,w,m!

5,2(d221h)n/21xmGOm

(n) ~$,x,lW %; ,21/nt,u* ,,2f/nw,m!

~5.18!

with the scaling dimensionxm of the eigenoperatorOm given
by

xm5d121hm . ~5.19!

At this stage our scaling solution~5.18! is rather formal,
and we still have to determine the eigenvalues ofg* . From
Eqs.~5.11! and ~5.14! we obtain
8-7
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g5S 0 0 0 0

u

90
2

u

2

u

15

u3/2

2

2
u

90
2

19u

10
2

17u

15
2

21u3/2

4

0
52u1/2

45

4u1/2

15

17u

4
2

«

2

D . ~5.20!

At the infrared stable fixed pointu* this matrix has the ei-
genvalues

h050, ~5.21a!

h152z* 5
f

n
22, ~5.21b!

h25~2328A30!
«

105
1O~«2!, ~5.21c!

h35~2318A30!
«

105
1O~«2!. ~5.21d!

The left eigenvector belonging toh0 reads^0u5(1,0,0,0),
i.e., A0 is an eigenoperator of the RG and its scaling beh
ior is governed byh0. From Sec. IV we know rigorously tha
the scaling dimension ofA0 is x05d12. Hence, Eq.~5.21a!
holds to arbitrary order in« expansion.h1 is associated with
the left eigenvector̂ 1u5„0,2,2,3(u* )1/2

…. Thus, we can
identify its eigenoperator withB1•H 8, cf. Sec. IV, and con-
clude that Eq.~5.21b! is valid to arbitrary order in« expan-
sion. To one-loop orderh1 is given by h1524«/21
1O(«2).

We observe that our one-loop results forh0 andh1 are in
full agreement with our nonperturbative results deduc
from the equation of motion. In other words, our one-lo
calculation fulfills important stringent consistency checks.
course, these checks do not guarantee the correctness o
results forh2 andh3. However, they reassure us that impo
tant features of our calculations, e.g., symmetry factors,
correct. In this indirect sense, the consistency checks ar
favor of our results forh2 andh3.

To extract the sought-after corrections to scaling we n
to know the scaling behavior of the coupling constants as
ciated with the RG eigenoperators. The renormalized con
bution of the eigenoperators to the HamiltonianH reads
*ddx (mvmOm . The flow of the coupling constantsvm under
renormalization is therefore described byv̄m( l )5 l vmvm with
the correction to scaling exponents

vm5xm2d521hm . ~5.22!

After all, we find these exponents stemming from the RR
specific irrelevant operators to be given by

v052, ~5.23a!

v15f/n, ~5.23b!
02611
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v25220.198«1O~«2!, ~5.23c!

v35210.636«1O~«2!. ~5.23d!

Before we turn to the general percolation operators,
find it instructive to briefly reanalyze the work on correctio
to scaling in RRN by HL. If one erroneously neglects t
coupling of the operatorA1 to the other operators unde
renormalization one is led to a ‘‘scalar’’ renormalization fa
tor ZHL that corresponds to the matrix elementZ1,1 of Z.
Thus, one would find to one-loop order

A1→Å15ZHL
21A1 , ~5.24!

ZHL511
1

«
M1,1

(1)1O~u2!512
u

2«
1O~u2!, ~5.25!

gHL52
u

2
1O~u2!. ~5.26!

The anomalous dimension was thenhHL5gHL* 52«/7
1O(«2), which results in an exponentvHL521hHL52
2«/71O(«2). The corresponding crossover exponentf2
defined by HL follows as f252f2nvHL5(2
25«/21)21@2(224«/21)2(22«/7)#511O(«2). Our
analysis above shows clearly that this exponent has no m
ing as far as corrections to scaling in RRN are concerne

B. Spin specific operators

To analyze corrections to scaling in continuous spin s
tems, we have to take into account the operatorAc defined in
Eq. ~2.14!. This operator breaks theO(D) symmetry in rep-
lica space. In this sense, its symmetry is lower than tha
the resistor specific operators. This lower symmetry has
important consequence. Though the renormalization ofAc

generates the operatorsA 08 , . . . ,A 38 , these do not in turn
generateAc under renormalization.

This structure is very similar to the one we encountered
studying multifractality in RRN@19,20# and random resisto
diode networks@21,22#. In the field theoretic description o
these networks, there are dangerous irrelevant operators
responding to the multifractal moments of the current dis
bution on the networks. These operators~masters! generate a
whole bunch of other operators~servants!. The servants, on
the other hand, do not generate their masters. All serv
must be taken into account in the renormalization process
least in principle. However, the renormalization matric
have a particular, simple structure. Due to this simple str
ture, the scaling index of a master operator is complet
determined by a single element of the renormalizat
matrix. Hence, for the practical purpose of calculating
master’s scaling index, the servants can be neglected.

To facilitate the renormalization of the spin specific o
erators, we introduce the vector

Ass5~Ac ,A 08 , . . . ,A 38!T. ~5.27!
8-8
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A proper renormalization requires a 535 renormalization
matrix Zss which we introduce by setting

Ass→Åss, Ass5ZssÅss. ~5.28!

The arguments given above imply thatZss is of the form

Zss5S Zc Xc

0T Z D , ~5.29!

whereZ is the renormalization matrix defined in Eq.~5.8!,
and 05(0,0,0,0). The elements ofXc must be chosen, in
principle, to cancel« poles associated with the servants ge
erated byAc . In practice, however, we do not need to det
mine these elements for computing the correction to sca
exponents. In a one-loop calculation we find

Zc511
17u

30«
1O~u2!. ~5.30!

The matrixgss, which is given up to an obvious modificatio
by Eq. ~5.14!, inherits the simple structure ofZss. As a con-
sequence, the eigenvalues ofgss at the fixed pointu* are
h0–h3 andhc . From Eq.~5.30! we obtain

hc52
17«

105
1O~«2!. ~5.31!

This eigenvalue leads finally to a correction exponent

vc522
17«

105
1O~«2!, ~5.32!

in addition tov0 , . . . ,v3. The crossover exponentfc of HL
is related tovc via fc52f2nvc . We obtain to one-loop
order

fc511
«

105
1O~«2! ~5.33!

in conformity with the value given by HL.

VI. RENORMALIZATION OF GENERAL
PERCOLATION OPERATORS

Now we turn to the renormalization of the operato
A4–A7. The corrections to scaling arising from these ope
tors have been calculated a long time ago by Amitet al. @28#.
Nevertheless, we think that the general percolation opera
deserve some attention here for the following two reason

~i! Amit et al. used the usual Potts model formulation
percolation that is different from the RRN formulation in th
way constraints on the order parameter field are imp
mented, viz.,(uWs(x,uW )50 versusc0W(x)50. It seems desir-
able to have a treatment of both the specific and the gen
percolation operators that is self-contained within one form
lation.

~ii ! Because the calculation is somewhat involved, t
independent approaches help to guarantee the correctne
results. In fact, our results concerning the general percola
02611
-
-
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operators coincide in the end with the results of Ref.@28#.
The general percolation operators affect the renorm

zation of the two-, three-, and four-point vertex function
To asses this effect, we have to calculate these ve
functions with insertions ofA4 to A7. The Feynman
diagrams that contribute to these vertex functions are s
marized in Fig. 2. To calculate these diagrams, we deco
pose them into their conducting diagrams and then take
limit w→0. Then, the conducting and the insulating prop
gators can be replaced by simple 1/(t1p2) propagators. For
most of the diagrams, decomposition culminates into to
simple numerical factor. A little caution must be exercise
however, to distinguish between terms corresponding toA6

andA7, respectively. To foster this distinction, we keep t
dependence of these two operators on the replica curr
explicit. This dependence is different in the way that the s
over the external replica currents, saylW 1 , . . . ,lW 4 vanishes,
viz., A6 is proportional to S5(dlW 11lW 2 ,0W dlW 31lW 4 ,0W

1dlW 11lW 3 ,0W dlW 21lW 4 ,0W1dlW 11lW 4 ,0W dlW 21lW 3 ,0W)/3 whereasA7 is

proportional toF5dlW 11lW 21lW 31lW 4 ,0W .
As for the specific operators, it is convenient to resc

the general operators. To be specific, we rescale the gen
percolation operators according to Eq.~5.4! with k450, k5
51, andk65k752.

Our one-loop calculation gives for the two-point functio
with insertions

FIG. 2. Diagrams contributing at one-loop order to the ren
malization of the general percolation operators. The bold lines s
bolize bold propagators. Single dots accompanied by a wiggly
respectively stand for an insertion of~4! A 48 , ~5! A 58 , and~7! A 78 .
An insertion of A 68 is depicted with help of two dots and tw
wiggly lines. Note that we have, in contrast to Fig. 1, displayed b
instead of conducting diagrams to save space.
8-9
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2GA
48

(2)
~$p%!5p4, ~6.1a!

2GA
58

(2)
~$p%!52p4

u1/2

9 «
, ~6.1b!

2GA
68

(2)
~$p%!50, ~6.1c!

2GA
78

(2)
~$p%!50, ~6.1d!

where we have dropped inconsequential factors (t/m2)2«/2

for notational simplicity. For the three-point functions wi
insertions we find

2GA
48

(3)
~$p%!52

(
i 51

3

pi
2

3

2 u3/2

«
, ~6.2a!

2GA
58

(3)
~$p%!5

(
i 51

3

pi
2

3 S 12
2 u

3 « D , ~6.2b!

2GA
68

(3)
~$p%!5

(
i 51

3

pi
2

3

u1/2

3 «
, ~6.2c!

2GA
78

(3)
~$p%!52

(
i 51

3

pi
2

3

u1/2

2 «
. ~6.2d!

Here, we omitted factors (t/m2)2«/2(m«/G«)1/2. Our results
for the four-point functions with insertions read

2GA
48

(4)
~$p%!5S

24u2

«
2F

36u2

«
, ~6.3a!

2GA
58

(4)
~$p%!52S

16u3/2

«
1F

24u3/2

«
, ~6.3b!

2GA
68

(4)
~$p%!5SS 12

6 u

« D1F
4 u

«
, ~6.3c!

2GA
78

(4)
~$p%!5S

6 u

«
1FS 12

12u

« D , ~6.3d!

where we dropped factors (t/m2)2«/2m«/G« .
The remaining RG analysis proceeds completely an

gous to that for the RRN specific operators. The RG equa
governing the general percolation operators has the s
structure as Eq.~5.13!. Of course, here we can setw50.
Basically, we just need to make the replacements

A8→Agp8 5~A 48 , . . . ,A 78!, ~6.4!

g→ggp, ~6.5!
02611
-
n
e

with the latter matrix resulting from Eqs.~6.1!–~6.3! as

ggp5S 2
u

6
2u3/2 224u2 36u2

u1/2

9

5u

12
2

«

2
16u3/2 224u3/2

0 2
u1/2

3

17u

3
2« 24u

0
u1/2

2
26u

35u

3
2«

D . ~6.6!

At the infrared stable fixed point,ggp has the eigenvalues

h450, ~6.7a!

h552h, ~6.7b!

h65~262A889!
«

21
1O~«2!, ~6.7c!

h75~261A889!
«

21
1O~«2!. ~6.7d!

The eigenvaluesh4 and h5 are associated with the
left eigenvectors ^4u5„2,3(u* )1/2,0,0… and ^5u
5„1,3(u* )1/2,23u* ,3u* …, respectively. By comparison
with the w→0 limit of Eqs. ~4.11!, we identifyB2•H 8 and
B3•H 8 as the corresponding eigenoperators. It follows t
Eqs.~6.7a! and~6.7b! are correct to arbitrary order in pertu
bation theory. The eigenvalues stated in Eqs.~6.7! entail the
correction to scaling exponents

v452, ~6.8a!

v5522h, ~6.8b!

v65220.182«1O~«2!, ~6.8c!

v75212.658«1O~«2! ~6.8d!

in full agreement with the results of Amitet al.

VII. CRITICAL BEHAVIOR OF THE AVERAGE
RESISTANCE, ETC.

Now we can harvest the results of our RG analysis
write down scaling expressions, including the most imp
tant corrections, for key observables for the RRN and
x-y model. We will elaborate on the RRN in some detail a
assemble step by step the generating functionG(x,x8,lW )
from which we then extractMR

(1) andS. To cover spin mod-
els, the generating function requires some modifications
will be explained.

A. Random resistor networks

The generating function has two kinds of ingredients, v
the two-point correlation function without insertions and t
8-10
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set of two-point correlation functions obtained by inserti
each of the RG eigenoperators. From Eqs.~3.3! and~5.18! as
well as its counterpart for the general percolation opera
we collect that

G~x,x8,lW !

5,d221hH G(2)~,ux2x8u,,2f/nwlW 2!

1 (
k51

7

vk,vkGOk

(2)~,ux2x8u,,2f/nwlW 2!1•••J .

~7.1!

Here, we used that the two-point correlation function
the inverse of the two-point vertex function and we appl
Fourier transformation to switch from momentum to po
tion space. The ellipsis stands for contribution from
relevant operators with a naive dimension higher than
Next we expand Eq.~7.1! in a power series inwlW 2 as well
as in the deviationu2u* from the fixed point. Choosing
,5ux2x8u21 and setting all nonuniversal constants equa
1 for notational simplicity we get the leading terms

G~x,x8,lW !

5ux2x8u2(d221h)H @11wlW 2ux2x8uf/n1•••#

3~11@u2u* #ux2x8u2v1••• !

1 (
k51

3

wlW 2ux2x8u2vk1f/n1•••1 (
k54

7

ux2x8u2vk

3@11wlW 2ux2x8uf/n1•••#1•••J . ~7.2!

By virtue of Eq.~2.9! we know that we now can extract th
average resistance by taking the derivative with respect
2lW 2/2 and then settinglW 50W . After all, we arrive at

MR
(1);ux2x8uf/nF11A ux2x8u2v

1 (
k51

7

Akux2x8u2vk1•••G . ~7.3!

Here,A andAk are nonuniversal constants. We opted to wr
them down explicitly here to make closer contact to E
~1.4!. A goes to zero foru→u* . TheAk vanish forvk→0.

Next we turn to the average conductivity of the RR
Commonly, the conductivityS of percolating systems is de
fined with respect to a bus bar geometry where the netw
is placed between two parallel superconducting plates~the
electrodes! of areaLd21, a distanceL apart. From the above
we expect that the average conductances of this finite-size
system scales as
02611
rs

-
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o

o
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rk

s~L,t!5utufFP~L/j!1J~L/j!utunv

1 (
k51

7

Jk~L/j!utunvk1•••G , ~7.4!

wherej;utu2n is the percolation correlation length andP,
J, and theJk are scaling functions with the properties

P~x!;J~x!;Jk~x!;H const for x!1

xd22 for x@1.
~7.5!

Above the percolation threshold~t,0! the RRN behaves on
length scales large compared to the correlation lengthj
;utu2n like a homogeneous system with conductivityS.
Hence, we may write forL@j that

S~t!;L22ds~L,t!. ~7.6!

Merging Eqs.~7.4!–~7.6! we finally get

S;utu tF11B utunv1 (
k51

7

Bk utunvk1•••G , ~7.7!

with nonuniversal amplitudesB and Bk . Of course,B van-
ishes foru→u* and theBk vanish forvk→0.

B. Spin systems

For spin systems such as thex-y model we had to include
the irrelevant operatorAc into our RG analysis because the
systems are, unlike the RRN, notO(D) invariant in replica
space. Thus, the RG has nine irrelevant eigenoperator
naive dimension 8 and the counterpart of Eq.~7.1! has an
extra term that features the exponentvc . By applying basi-
cally the same steps as for the average resistance we find
the first cumulant of the angular fluctuations scales as

Cw
(1);ux2x8uf/nF11Cux2x8u2v1Ccux2x8u2vc

1 (
k51

7

Ckux2x8u2vk1•••G , ~7.8!

whereC, Cc , and theCk are nonuniversal amplitudes.
Equation ~7.8! concludes our results on corrections

scaling. However, our analysis also sheds light on the sec
cumulant of the angular fluctuations. Equation~2.11! implies
that we can deriveCw

(2) via taking the derivative with respec

to K2(lW ). This homogenous polynomial inlW exclusively
appears inAc . We saw thatAc has the property of being a
master operator whose scaling behavior is governed byvc .
Consequentially, we obtain that

Cw
(2);ux2x8ufc /n1•••. ~7.9!

Here,Ac gives rise to the leading scaling behavior, i.e.,Ac is
a dangerous irrelevant operator as far asCw

(2) is concerned.
8-11
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Of course it is interesting in this context to ask, what t
leading scaling behavior of the higher cumulants might be
can be shown to arbitrary order in perturbation theory@30#,
that

Cw
( l );ux2x8uc l /n1•••, ~7.10!

where thec l are the critical exponents of the multifract
moments

MI
( l )5K (

b
S I b

I D 2l L
C

8
;ux2x8uc l /n1••• ~7.11!

of the current distribution on RRNs, withI b being the current
flowing through bondb andI being the total external curren
Note that the HL resultfc511«/1051O(«2) and the«
expansion result@18–20# for c2 ~the entire family of thec l
is known to two-loop order@19,20#! are in full agreement.
The upshot here is that Eq.~7.9! represents merely an in
stance of the general result~7.10!.

VIII. CONCLUDING REMARKS

We have studied corrections to scaling in RRN and c
tinuous spin models. As far as the leading scaling beha
and its leading corrections are concerned, the HL model p
vides a unified description of both systems. Being interes
in next to leading corrections, however, we had to consi
distinct sets of irrelevant operators for the two systems.

In both systems, we found the typical mixing of irreleva
operators under renormalization. Thus, we had to comput
entire renormalization matrices. This is the reason why
restricted ourself to considering irrelevant operators with
naive dimension 8. At least in principle, one could analy
higher corrections to scaling originating from irrelevant o
erators of naive dimension 10, 12, and so on. However
these cases the renormalization matrices become pro
tively big and their computation and diagonalization requ
enormous effort.

One of the spin specific operators, namely,Ac , is quali-
tatively different from the remaining irrelevant operators u
der consideration.Ac has the properties of a master operat
Hence, it is sufficient to calculate a single renormalizat
constant to determine its scaling dimension. This can be d
in an elegant way and with moderate effort up to two-lo
order@30#. One has to bear in mind, though, that the corr
tions to scaling are not only resulting fromAc but also from
the other spin specific as well as from the general percola
operators. Overall, it would require a lot of work to exte
our results on corrections to scaling to two-loop order or
include irrelevant operators of higher naive dimension.

It is interesting to compare the corrections to scal
stemming from the specific and the general percolat
operators with the corrections arising from the prese
of a surface. In Ref.@7# we studied a semi-infinite RRN a
the so-called special and ordinary transitions@29#. We cal-
culated the corrections toMR

(1) induced by the surface whe
the terminal pointsx and x8 are located on the surface. A
the special transition we found a correction that vanishe
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ux2x8u2vS for increasing terminal separation with the co
rection to scaling exponentvS512«/211O(«2). This cor-
rection falls off slower than the corrections induced by t
specific and the general percolation operators, i.e., this
rection represents the next to leading correction if a surf
is present. At the ordinary transition we found a correcti

ux2x8u2vS
`

with vS
`53223«/1051O(«2), i.e., this correc-

tion vanishes faster than any of the corrections induced
the specific and the general percolation operators.
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APPENDIX A: USEFUL IDENTITIES

Equation~4.8! can be regarded as the centerpiece of S
IV. In this appendix we first derive a Ward identity that r
lates the vertex functions with a single insertion of the o
eratorH 8 to the vertex functions without insertion. Then w
obtain Eq. ~4.8! as a corollary by slightly modifying our
previous arguments.

1. A Ward identity

Now we augment the HL model with an external fiel
i.e., we consider the Hamiltonian

Hh5H2~h,s!, ~A1!

with H given by Eq.~2.4! with f i50 and where we have
used the abbreviated notation

~h,s!5E ddxE
uW
h~x,uW !s~x,uW !. ~A2!

To facilitate our argument, we consider the shift

s~x,uW !→s~x,uW !1c~x,uW ! ~A3!

of the order parameter field. This shift leads to the modifi
tion

Hh→Hh1~c,H h8! ~A4!

of the Hamiltonian. Here and in the following we omit in
consequential terms of orderO(c2). By virtue of Eq.~A4! an
application of the shift to

^~h,s!n&5E Ds~h,s!nexp~2Hh! ~A5!

yields

^~h,s!n~c,H h8!&5n~h,c!^~h,s!n21&. ~A6!

Dividing both sides of Eq.~A6! by n! and summing from 1
to ` leads to
8-12
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Z(c,H
h8)@h#5~h,c!Z@h#, ~A7!

where

Z @h#5^exp~h,s!&5 (
n50

`
^~h,s!n&

n!
~A8!

is the generating functional for the correlation functions
the order parameter field and

Z(c,H
h8)@h#5 (

n51

`
^~c,H h8!~h,s!n&

n!
~A9!

is the generating functional for the corresponding correlat
functions with an insertion of (c,H h8). Defining

Z @h,c#5Z(c,H
h8)@h#1Z@h# ~A10!

and switching to the generating functional of connected c
relation functions,

W @h,c#5 ln~Z @h,c# !, ~A11!

and so on, we find

W @h,c#5W @h#1~h,c!. ~A12!

Moving over to the generating functionalG@h,c# of vertex
functions via the Legendre transformation

G@s,c#1W @h,c#5~h,s!, ~A13!

with

dG

ds
5h,

dW
dh

5s,
dG

dc
52

dW
dc

, ~A14!

we arrive at

G@s,c#5~h,s!2W @h#2~h,c!. ~A15!

Now we take the functional derivative with respect toc to
obtain the identity

GH 85
dG

dc
52

dG

ds
~A16!

between the generating functionalGH 8 of vertex functions
with an insertion ofH 8 and the generating functionalG of
the usual vertex functions with out any insertion. Finally, w
taken functional derivatives with respect to the order para
eter field to obtain the Ward identity

GH 8
(n)

52G (n11). ~A17!

2. Derivation of Eq. „4.8…

In order to derive Eq.~4.8!, we just need to modify our
arguments of preceding section slightly. Here, we assu
that c is a composite field comprising the order parame
02611
f
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field and possibly its gradients in real and in replica spa
Consequentially, we have to replace Eq.~A6! by

^~h,s!n~c,H h8!&5n^~h,c!~h,s!n21&, ~A18!

where we once more have omitted terms of orderO(c2).
Upon takingn functional derivatives with respect to the e
ternal field we obtain

^s~x1,uW 1!•••s~xn,uW n!~c,H 8!&

5(
i 51

n

^s~x1,uW 1!•••s~xi 21,uW i 21!c~xi ,uW i !

3s~xi 11,uW i 11!•••s~xn,uW n!&. ~A19!

Settingc(x,uW )5a(x,uW )F(x,uW ), wherea is independent of
the order parameter field, and taking the functional derivat
with respect toa we obtain

^s~x1 ,uW 1!•••s~xn ,uW n!F~x,uW !H 8~x,uW !&

5(
i 51

n

d~x2xi !d~uW 2uW i !^s~x1 ,uW 1!•••s~xi 21 ,uW i 21!

3F~xi ,uW i !s~xi 11 ,uW i 11!•••s~xn ,uW n!&. ~A20!

Equation~4.8! is now readily obtained by integrating overuW .

APPENDIX B: COMPOSITE FIELDS IN THE HL
AND THE POTTS MODELS

In Sec. IV we exploited information on lower-dimension
operators to draw conclusions on the scaling dimension
several eight-dimensional operators that are associated
corrections to scaling. This appendix is intended to prov
some background on the RG behavior of the low
dimensional operators and to establish some of the res
that serve as an input in Sec. IV.

The following arguments refer primarily to the HL mode
Since the HL model reduces to the usual Potts model w
N5(2M )D states upon settingw50, however, our reason
ings also apply to the latter model. Being interested in
Potts model, one basically just has to setw50 in any of the
formulas in this section. To make closer contact to the c
ventional notation for the Potts model, one may repla
s(x,uW ) by si(x) with i 51, . . . ,N @along with h(x,uW )
→hi(x) for the external field and so on# and the integral*uW

by a summation overi.

1. Four-dimensional operators

We start by considering composite operators with the
ive dimension 4. The simplest operators of this kind areB0 ,
B1, andB2. The scaling dimensions of these operators f
low directly from known RG results. We will revisit thes
operators briefly towards the end of this section.

B0 belongs to the trivial representation of the permutat
symmetry group. Its counterpart belonging to the fundam
tal representation is
8-13
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C15s22
1

NEuW
s2. ~B1!

The scaling dimension of this operator does not follow i
mediately from the known results. It will be derived in th
following. We consider the Hamiltonian

Hs5E ddx(
uW

H t

2
s21

1

2
ss21

1

2
~“s!21

w

2
~“us!2

1
g

6
s32hsJ , ~B2!

whereh5h(x,uW ) is an external field ands5s(x,uW ) has the
property*uWs50. Due to the extra terms, we need renorm
izations in addition to those specified in the renormalizat
scheme~3.1!, viz.,

s→s̊5Z21Zss, ~B3a!

h→h̊5Z21/2~h1As21Bts1C¹2s1Dw¹u
2s!.

~B3b!

In order to determine the renormalization factorZs and the
additive renormalization constantsA to D, we perform a shift

s5s81c, ~B4!

where c is assumed to satisfy the condition*uWc50. This
shift transforms the Hamiltonian so that

Hs@s,t,s,w,g,h#5Hs@s8,t,s8,w,g,h8#

1Hs@c,t,s,w,g,h#, ~B5!

where

s85s1gc, ~B6a!

h85h2tc2sc1¹2c1w¹u
2c2

g

2
c2. ~B6b!

In other words, the HamiltonianHs is invariant in form un-
der the shift~B4! up to an inconsequential term that does n
depend on the order parameter field. Note that the shift
ther modifiest nor w or g. Since theZ factors depend only
on the dimensionless variantu of g, it follows that none of
the Z factors is affected by the shift.

Equation~B4! implies that the renormalized version ofc
is given by

c5Z21/2c̊. ~B7!

Exploiting this we find by renormalizing Eq.~B6a! that

Zs5Zg . ~B8!

Renormalization of Eq.~B6b! yields
02611
-

-
n

t
i-

h85h2~2gA1Zg!sc2~2gA1Zg!
g

2
c22~Bg1Zt!tc

2~Cg1Z!¹2c2~Dg2Zw!w¹u
2c. ~B9!

Demanding that the renormalizedh8 retains its original from,
cf. Eq. ~B6b!, we obtain

A5
12Zg

2g
, B5

12Zt

g
, ~B10a!

C5
Z21

g
, D5

Zw21

g
~B10b!

for the additive renormalization constants. Now we know
the renormalization factors and constants and hence we
write down the renormalized version of the HamiltonianHs ,
viz.,

Hs5H1~s,A!1O~s2!, ~B11!

where

A5
Zg

2 S s22
1

NEuW
s2D 1

Zt21

g
ts2

Z21

g
¹2s2

Zw21

g
w¹u

2s

~B12!

is the fully renormalized version of the operatorD1. Naively,
one might have expected that a mere multiplication withZ21

was sufficient to renormalizeD1. Equation~B12!, however,
shows clearly that this is not the case.

Next we determine the scaling dimension ofA via the
scaling behavior of its couplings. Upon taking the deriva-
tive of Eq. ~B3a! with respect to the external inverse leng
scalem we obtain

k̂5m]msu05g2gg . ~B13!

Recalling thatg*5h and deducing from

b5~2«13g22gg!u ~B14!

that gg* 52«/213h/2 we find

k̂* 5
«2h

2
~B15!

as the fixed point value ofk̂. Taking into account that the
naive dimension ofs is 2, we get that the RG flow ofs in
the vicinity of the fixed point is given by

s~, !5s,2ys ~B16!

with

ys5
d221h

2
. ~B17!

Finally, this leads to
8-14



e

nt

a
a

le

g

c-

th
e

d

fo
g

th

on

les

r-

aling
E
on

m-

a
d at
ining

in

CORRECTIONS TO SCALING IN RANDOM RESISTOR . . . PHYSICAL REVIEW E69, 026118 ~2004!
xA5d2ys5
d122h

2
~B18!

for the scaling dimension ofA. Note thatxA is identical to
the scaling dimension of the operatorB3.

We have to point out thatA is not an eigenoperator of th
RG. This fact follows from two observations:~i! B35H 8 is
an eigenoperator, as can be seen from the Ward ide
~A17!, and~ii ! A is just one ingredient ofB3,

B35gA1ts2¹2s2w¹u
2s, ~B19!

where, of course, all quantities in this equation are renorm
ized quantities. For completeness we mention that the W
identity ~A17! takes on the form

gGA(p)
(n) ~$q%!52G (n11)~$q%,p!1~p21wlW 21t!dn,1

~B20!

when expressed in terms ofA.
As announced above, we now briefly return to the simp

four-dimensional operators. The scaling dimension ofB0 fol-
lows immediately from the scaling behavior of its couplin
constantt(,)5t,2yt with yt51/n,

xB0
5d2yt5d21/n. ~B21!

The operatorsB1 and B2 are obtained by applying, respe
tively, w¹u

2 and¹2 to the fundamental fields and hence

xB1
5xs125

d121h

2
, ~B22a!

xB2
5xs1

f

n
5

d221h

2
1

f

n
. ~B22b!

By now, we have expressed the scaling dimensions of all
four-dimensional operators which enter our analysis in S
IV in terms of the fundamental exponentsh, n, andf.

2. Six-dimensional operators

The most self-evident operators with naive dimension
are, perhaps,

C25ws¹u
2s, C35s¹2s, C45s3. ~B23!

One eigencombination of these operators follows imme
ately from Eq.~4.8!, viz., s•H 8. Due to Eq.~4.10! we know
that the scaling dimension of this eigenoperator is

xs•H 85d2xs1xs5d, ~B24!

i.e., it is marginal in any dimension. The physical reason
this marginality is thats•H 8 can be removed by a rescalin
of the amplitude of the order parameter field.

Next, we take a closer look at the scaling dimension of
renormalized version ofC4. Setting all thef i in Eq. ~2.4! to
zero, applying the renormalization scheme~3.1!, and taking
the derivative with respect to the renormalized coupling c
stantg we obtain
02611
ity

l-
rd

r

e
c.

6
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]H
]g

5E ddxE
uW
B, ~B25!

where

B5
1

6
~Zg12uZg8!s31

uZt8

g
ts1

uZ8

g
~“s!21

uZw8

g
~“us!2

~B26!

is the fully renormalized versionC4. Here and in the follow-
ing the prime indicates derivatives with respect tou. Equa-
tion ~B25! implies the Ward identity

]G (n)

]g
52GB

(n) . ~B27!

Taking into account that the genuine independent variab
of the RG equation~RGE! for the vertex functionsG (n) are
m, u, t, andw, and exploiting the commutator

F ]

]g
,m]mG5FG«

1/2m2«/22Au
]

]u
,m]mG5

«

2

]

]g
, ~B28!

we find that the RGE for the vertex functions with an inse
tion of B is given by

S m]m1kt]t1zw]w1b]u2
n

2
g1b81

«

2DGB
(n)

5
u

g
~ng822k8t]t22z8w]w!G (n). ~B29!

Note that this RGE is not homogeneous and henceB is not
an eigenoperator. Nevertheless, we can deduce the sc
dimension ofB from the homogeneous part of the RG
~B29!. Taking into account the operator’s naive dimensi
3(d22)/2, we obtain

xB5d1v, ~B30!

wherev is the Wegner exponent featured in Sec. III B.

APPENDIX C: CALCULATION OF FEYNMAN DIAGRAMS

In this appendix we give some details on the diagra
matic calculation that leads to Eqs.~5.5! and~5.6!. Instead of
elaborating on all of the diagrams we restrict ourself to
couple of representative examples. The steps explaine
these instances can then easily be adapted for the rema
diagrams.

We start by considering diagramA with an insertion of
A1, cf. Fig. 1. Upon writing the conducting propagators
Schwinger representation we have
8-15
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AA1
5g2w2E

0

`

ds1ds2ds3exp@2~s11s21s3!t#

3E
k
(
kW

~kW 2!2exp$2s1@k21wkW 2#2s2@~k1p!21wkW 2#

2s3@~k2q!21w~kW 2lW !2#%. ~C1!

Note that symmetry factor ofAA1
is 1 and not 1/2~the sym-

metry factor ofA), because there are two possibilities~the
two conducting propagators! to insertA1. Now we carry out
a completion of squares for the momenta as well as for
currents. After the straightforward momentum integration
arrive at

AA1
5g2w2

1

~4p!d/2E0

` ds1ds2ds3

~s11s21s3!d/2
exp@2~s11s2

1s3!t#expF2
s2s3~p1q!21s1s2p21s1s3q2

s11s21s3
G

3exp@2R~s1 ,s2 ,s3!wlW 2#(
kW

FkW 1
s3

s11s21s3
lW G4

3exp@2~s11s21s3!kW 2#, ~C2!

where R(s1 ,s2 ,s3)5(s1s21s2s3)/(s11s21s3) is, accord-
ing to our real-world interpretation, the total resistance of
diagramAA1

. At this stage it is useful to switch to continu

ous loop currents and to replace the summation(kW by the
integration *kW . By standard Gaussian integration we th
find for D→0

AA1
5g2w2

1

~4p!d/2E0

` ds1ds2ds3

~s11s21s3!d/2
exp@2~s11s2

1s3!t#H s3
4

~s11s21s3!4
~lW 2!212

s3
2

~s11s21s3!3

lW 2

w

22
s3

2

~s11s21s3!4

lW 2

w
@s2s3~p1q!21s1s2p21s1s3q2

1~s1s31s2s3!wlW 2#J , ~C3!

where we have carried out a Taylor expansion of the sec
and third exponential functions appearing in Eq.~C2! and
where we have discarded all convergent terms. The rem
ing integrations over the Schwinger parameters can be
plified by settings15tx, s25ty, and s35t(12x2y) and
then integratingt from 0 to `, y from 0 to 12x, and x
from 0 to 1. Expanding the so obtained intermediate re
for small «, we obtain

AA1
52g2wlW 2

G«

«
t2«/2H t

3
1

p2

90
1

p1
21p2

2

30 J , ~C4!
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where we have setp5p11p2 andq52p2. The computation
of BA1

is, in comparison, simple because it does not invo
a summation over a loop current. The total one-loop con
bution to2GA 1

(2) is given by

2GA 1

(2)1-loop5AA1
22BA1

52g2wlW 2
G«

«
t2«/2

3H t

3
1wlW 21

p2

90
1

p1
21p2

2

30 J . ~C5!

Here we have a clear example of the mixing of irreleva
operators in our perturbation calculation. The insertion ofA1
does not only generate primitive divergences proportiona
w2(lW 2)2 but also those of the typetwlW 2 and p2wlW 2. Note
the we dropped the first term in the braces in Eq.~5.5! be-
cause it leads only to subdominant correction due to the
tor t.

As a next example, we consider the diagramAA2
that

stands for

AA2
5g2wE

0

`

ds1ds2ds3exp@2~s11s21s3!t#

3E
k
(
kW

kW 2
k21~k1p!2

2
exp$2s1@k21wkW 2#

2s2@~k1p!21wkW 2#2s3@~k2q!21w~kW 2lW !2#%.

~C6!

Completion of squares in the momenta and the currents le
to

AA2
5

g2

2
wE

0

`

ds1ds2ds3exp@2~s11s21s3!t#

3expF2
s2s3~p1q!21s1s2p21s1s3q2

s11s21s3
G

3exp@2R~s1 ,s2 ,s3!wlW 2#E
kW
FkW 1

s3

s11s21s3
lW G2

3exp@2~s11s21s3!kW 2#E
k
F S k2

s2p2s3q

s11s21s3
D 2

1S k1p2
s2p2s3q

s11s21s3
D 2Gexp@2~s11s21s3!k2#,

~C7!

where we switched to continuous loop currents. Carrying
both Gaussian integrations and performing a Taylor exp
sion we obtain in the replica limit
8-16
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AA2
5

g2

2
wlW 2

1

~4p!d/2E0

` ds1ds2ds3

~s11s21s3!d/2

3exp@2~s11s21s3!t#H ds3
2

~s11s21s3!3

1
s3

2p2

~s11s21s3!2
12

s2
2s3

2p222s2s3
3p•q1s3

4q2

~s11s21s3!4

22
s2s3

2p22s3
3p•q

~s11s21s3!3

2d
s2s3

3~p1q!21s1s2s3
2p21s1s3

3q2

~s11s21s3!4

2d
~s1s3

31s2s3
3!wlW 2

~s11s21s3!4 J , ~C8!

where we have discarded convergent terms. Using the s
change of variables as forAA1

we integrate out the

Schwinger parameters. This leads in« expansion to the re
sult

AA2
52g2wlW 2

G«

«
t2«/2H t

2
1

wlW 2

10
2

p2

90
1

p1
21p2

2

60 J .

~C9!

The diagramBA2
can be calculated by similar means. For t

entire one-loop contribution to2GA 2

(2) we find

2GA 2

(2)1-loop5AA2
22BA2

5g2wlW 2
G«

«
t2«/2

3H 5t

2
1

19wlW 2

10
1

p2

90
1

3~p1
21p2

2!

20 J .

~C10!

DiagramAA3
serves as our final example. In Schwing

representation this diagram reads

AA3
52gwE

0

`

ds1ds2exp@2~s11s2!t#

3E
k
(
kW

kW 21~kW 2lW !21lW 2

3
exp$2s1@~k2q!2

1w~kW 2lW !2#2s2@~k1p!21wkW 2#%. ~C11!
02611
me
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Once more we undertake a completion of squares in the
menta and currents. After integrating out the loop moment
we have

AA3
52

g

3
w

1

~4p!d/2E0

` ds1ds2

~s11s2!d/2
exp@2~s11s2!t#

3exp@2R~s1 ,s2!@wlW 21~p1q!2##

3E
kW
FlW 21S kW 2

s2

s11s2
lW D 2

1S kW 1
s1

s11s2
lW D 2G

3exp@2~s11s2!wkW 2#, ~C12!

with the total resistance of this diagram beingR(s1 ,s2)
5s1s2 /(s11s2). Integration over the loop current and Ta
lor expansion gives, up to convergent terms,

AA3
52

g

3
wlW 2

1

~4p!d/2E0

` ds1ds2

~s11s2!d/2
exp@2~s11s2!t#

3H 112
s1

2

~s11s2!2
2R~s1 ,s2!@wlW 21~p1q!2#

22
s1

3s2

~s11s2!3
@wlW 21~p1q!2#J . ~C13!

The integrations over the Schwinger parameters can her
simplified by settings15tx ands25t(12x). After symme-
trizing the external momenta the« expanded result reads

AA3
5gwlW 2

G«

«
t2«/2H 10t

9
1

8wlW 2

45
1

8~p1
21p2

2!

90 J .

~C14!

The calculation ofBA3
is fairly easy. Merging the two result

we obtain

2GA 3

(2)1-loop5AA3
22BA3

52gwlW 2
G«

«
t2«/2

3H 14t

9
1

52wlW 2

45
1

2~p1
21p2

2!

15 J . ~C15!

The three-leg diagram with insertions can be computed
similar techniques as we have used for the two-leg diagra
The three-leg diagram benefits from the extra simplificat
that they can be evaluated at vanishing external mome
because all their contributions with nonzero external m
menta are convergent.
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